

Efficacy of double-buffered sodium butyrate supplementation in low energy-protein broiler diets

B. Iglesias^{1,2}, M.V. Charriere¹, V. Fain Binda¹, C. Marecaille³ and J. Melo^{3,4*}

¹Secc. Avicultura, EEA Pergamino, Inst. Nac. Tec. Agropecuaria (INTA), Argentina; ²Depto. Prod. Animal, UNNOBA, Argentina; ³Dietaxion SAS, France; ⁴Depto. Tecnología, Univ. Nac. Luján (UNLu), Argentina.

OBJECTIVE: The aim of this study was to evaluate if when doing a higher reduction of energy and protein in broiler diets, DBSB (Double-buffered sodium butyrate) allows to reach the performance of birds fed a classic field diet.

MATERIALS AND METHODS:

Animals: 972 one-day-old male broiler chicks (Cobb-500) were allocated in 54 floor pens (9 replicates/treatment).

Feed: A three phases feeding program was used (1-7; 8-21; 22-33 days).

Treatments: Factorial 3 x 2

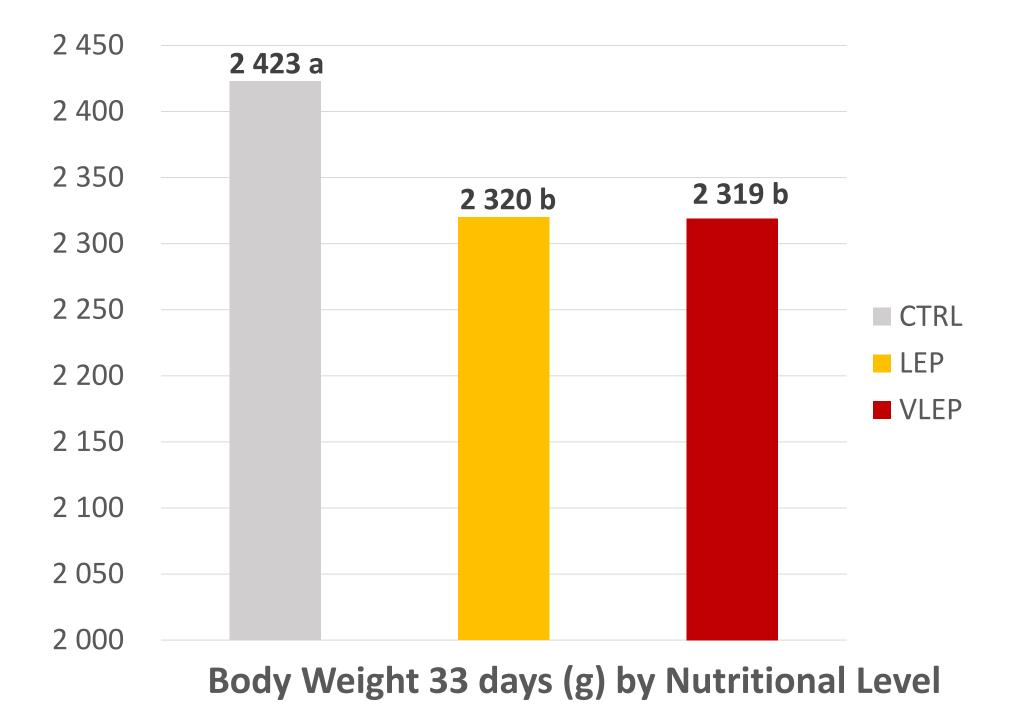
- **Control** (CTRL): industrial diet (corn, soybean meal, M&B meal)- AME-kcal/kg: 2,950, 3,000, 3,100; CP-%: 22.0, 20.0, 18.5; Lys_{dig}-%: 1.22, 1.12, 1.03
- Low Energy Protein (LEP): Control diet -3% AME, CP, Lys_{dig}, M+C_{dig}, Thr_{dig}.
- **Very Low Energy Protein** (VLEP): Control diet -5% AME, CP, Lys_{dig}, M+C_{dig}, Thr_{dig} And
- DBSB (BUTYLin®54): Was or not included on-top from 1-33 days at 600g/MT.

Parameters:

- Feed intake (FI)
- Feed conversion ratio (FCR)
- Body Weight (BW)
- BW/FCR

Statistical analysis:

ANOVA


RESULTS:

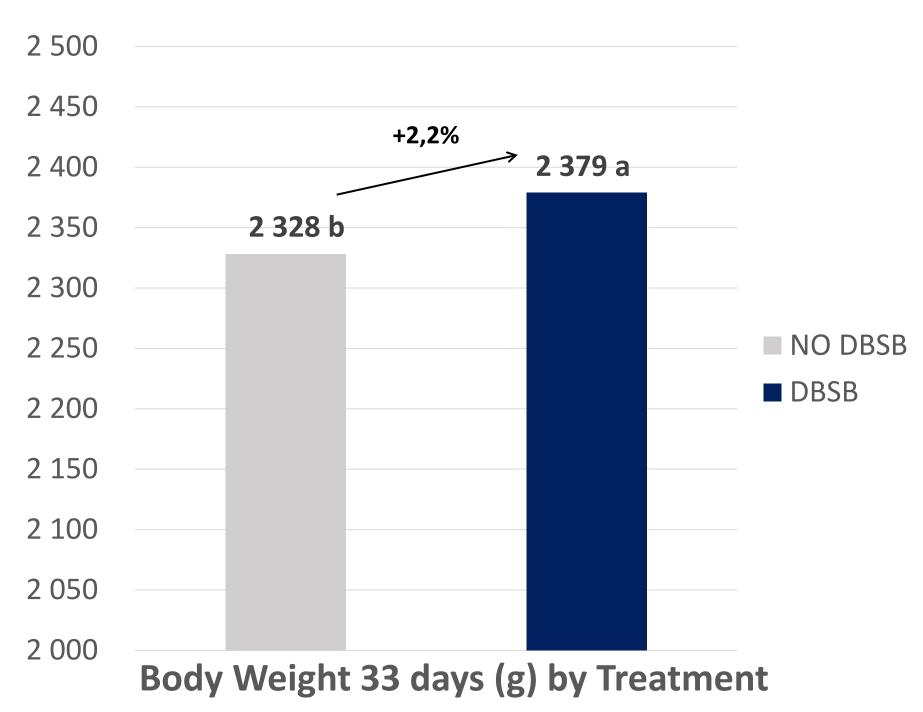

- At 33-d Body Weight (BW) decreased as the nutrient deficit increased (p≤0.05). When DBSB was added to the diets, regardless of the nutrient level, it increased BW at the same age (p≤0.05).
- The FCR increased as the nutrient levels in the diet decreased (p≤0.05). When DBSB was added to the diets, regardless of the nutrient level, no effects were observed in FCR (p>0.05).
- BW/FCR decreased as the nutrient level decreased (p≤0.05) but increased when DBSB was added (p>0.05).

Table 1: Performance of broilers according to treatment for 33 days

	BW 33 d (g)	FI 33 d (g)	FCR 33 d	BW/FCR
CTRL-Without	2376	3582 ^b	1.520	1580
LEP-Without	2316	3599 ^b	1.555	1471
VLEP-Without	2292	3685 ^a	1.606	1430
CTRL-DBSB	2470	3581 ^b	1.473	1681
LEP-DBSB	2324	3677 ^a	1.581	1437
VLEP-DBSB	2345	3688 ^a	1.587	1467
DBSB	* (P<0.05)	* (P<0.05)	NS (P>0.05)	NS (P>0.05)
NUT.LEV.	* (P<0.05)	* (P<0.05)	* (P<0.05)	* (P<0.05)
NL x DBSB	NS (P<0.1)	* (P<0.05)	NS (P<0.1)	NS (P<0.1)

NS: Not significant; a & b for significant difference (P<0.05)

CONCLUSION: The supplementation of 600 ppm of DBSB in broilers fed LEP or VLEP diets enables to get similar BW compared to birds fed a common field diet, which means that DBSB is then a good strategy to save resources and avoid excess of excretions in the environment.

